

Hamming codes

- One of the earliest codes studied in coding theory.
- Named after Richard W. Hamming
 - The IEEE Richard W. **Hamming Medal**, named after him, is an award given annually by Institute of Electrical and Electronics Engineers (IEEE), for "exceptional contributions to information sciences, systems and technology".
 - Sponsored by Qualcomm, Inc
 - Some Recipients:
 - 1988 Richard W. Hamming
 - 1997 Thomas M. Cover
 - 1999 David A. Huffman
 - 2011 Toby Berger
- The simplest of a class of (algebraic) error correcting codes that **can** *correct* **one error in a block of bits**

bits, parity bits, or check bits.

Generator matrix: a revisit

• From $\underline{\mathbf{x}} = \underline{\mathbf{b}}\mathbf{G} = \sum_{j=1}^{k} b_j \underline{g}_{\not i}^{(j)}$, we see that the *j* element of the codeword $\underline{\mathbf{x}}$ of a linear code is constructed from a linear combination of the bits in the message:

$$x_j = \sum_{i=1}^k b_i g_{ij} \, .$$

- The elements in the *j*th column of the generator matrix become the weights for the combination.
 - Because we are working in GF(2), g_{ij} has only two values: 0 or 1.
 - When it is 1, we use b_i in the sum.
 - When it is 0, we don't use b_i in the sum.
- Conclusion: For the jth column, the ith element is determined from whether the ith message bit is used in the sum that produces the jth element of the codeword <u>x</u>.

Parity Check Matrix: Ex 1

Relationship between \mathbf{G} and \mathbf{H} .

	-	-	0		0	$\begin{array}{c} x_6 \\ d_3 \end{array}$	· · · ·			$y_2 \\ x_2$					
G =	[1	1	1	0	0	0	I		Γ1	$\frac{d_1}{1}$	0	1	0	0	1
	1	0	0	1	1	0	0	← H =	0	1	1	0	0	1	1
	0	0 0	1 1	0 0	1 1	1 0	0 1		0	0	0	1	1	1	1

(columns of) identity matrix in the data positions

(columns of) identity matrix in the parity check positions

Parity Check Matrix

Key property:

$$\mathbf{G}\mathbf{H}^{T} = \mathbf{0}_{k \times (n-k)}$$

Proof:

- When there is no error $(\underline{\mathbf{e}} = \underline{\mathbf{0}})$, the syndrome vector calculation should give $\underline{\mathbf{s}} = \underline{\mathbf{0}}$.
- By definition,

 $\underline{\mathbf{s}} = \underline{\mathbf{y}}\mathbf{H}^T = (\underline{\mathbf{x}} \oplus \underline{\mathbf{e}})\mathbf{H}^T = \underline{\mathbf{x}}\mathbf{H}^T \oplus \underline{\mathbf{e}}\mathbf{H}^T = \underline{\mathbf{b}}\mathbf{G}\mathbf{H}^T \oplus \underline{\mathbf{e}}\mathbf{H}^T.$

- Therefore, when $\underline{\mathbf{e}} = \underline{\mathbf{0}}$, we have $\underline{\mathbf{s}} = \underline{\mathbf{b}}\mathbf{G}\mathbf{H}^T$.
- To have $\underline{\mathbf{s}} = \underline{\mathbf{0}}$ for any $\underline{\mathbf{b}}$, we must have $\mathbf{G}\mathbf{H}^T = \underline{\mathbf{0}}$.

Systematic Encoding

- Code constructed with distinct information bits and check bits in each codeword are called **systematic codes**.
 - Message bits are "visible" in the codeword.
- Popular forms of **G**:

$$\mathbf{G} = \begin{bmatrix} \mathbf{P}_{k \times (n-k)} \mid \mathbf{I}_{k} \end{bmatrix} \underbrace{\mathbf{x}} = \underline{\mathbf{b}} \mathbf{G} = \begin{bmatrix} b_{1} & b_{2} & \cdots & b_{k} \end{bmatrix} \begin{bmatrix} \mathbf{P}_{k \times (n-k)} \mid \mathbf{I}_{k} \end{bmatrix}$$
$$= \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{n-k} \mid b_{1} & b_{2} & \cdots & b_{k} \end{bmatrix}$$
$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_{k} \mid \mathbf{P}_{k \times (n-k)} \end{bmatrix} \underbrace{\mathbf{x}} = \underline{\mathbf{b}} \mathbf{G} = \begin{bmatrix} b_{1} & b_{2} & \cdots & b_{k} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{k} \mid \mathbf{P}_{k \times (n-k)} \end{bmatrix}$$
$$= \begin{bmatrix} b_{1} & b_{2} & \cdots & b_{k} \mid x_{k+1} & x_{k+2} & \cdots & x_{n} \end{bmatrix}$$

Parity check matrix

• For the generators matrices we discussed in the previous slide, the corresponding **parity check matrix** can be found easily:

$$\mathbf{G} = \begin{bmatrix} \mathbf{P}_{k \times (n-k)} & | \mathbf{I}_k \end{bmatrix} \longrightarrow \mathbf{H} = \begin{bmatrix} \mathbf{I}_{n-k} & | -\mathbf{P}^T \end{bmatrix}$$

Check:
$$\mathbf{G}\mathbf{H}^T = \begin{bmatrix} \mathbf{P} & | \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{I} \\ -\mathbf{P} \end{bmatrix} = \mathbf{P} \oplus (-\mathbf{P}) = \mathbf{0}_{k \times (n-k)}$$

$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_k & | \mathbf{P}_{k \times (n-k)} \end{bmatrix} \longrightarrow \mathbf{H} = \begin{bmatrix} -\mathbf{P}^T & | \mathbf{I}_{n-k} \end{bmatrix}$$

Hamming codes

Now, we will gives a general recipe for constructing Hamming codes.

2

Parameters:

- m = n k = number of parity bits
- $n = 2^m 1 \in \{3, 7, 15, 31, 63, 127, \dots\}$ 3
- $k = n m = 2^m m 1$ 1 4

It can be shown that, for Hamming codes,

• $d_{\min} = 3$. • Error correcting capability: t = 1

m=3

Hamming codes: Ex. 2

• Systematic (7,4) Hamming Codes

- Columns are all possible 3-bit vectors
- We arrange the columns so that I₃ is on the left to make the code systematic. (One can also put I₃ on the right.)
- Note that the size of the identity matrices in **G** and **H** are not the same.

Minimum Distance Decoding

• Observe that

$$d(\underline{\mathbf{x}},\underline{\mathbf{y}}) = w(\underline{\mathbf{x}} \oplus \underline{\mathbf{y}}) = w(\underline{\mathbf{e}})$$

- Therefore, minimizing the distance is the same as minimizing the weight of the error pattern.
- New goal:
 - find the decoded error pattern $\hat{\mathbf{e}}$ with the minimum weight
 - then, the decoded codeword is $\hat{\mathbf{x}} = \mathbf{y} \oplus \hat{\mathbf{e}}$
- Once we know $\hat{\mathbf{x}}$ we can directly extract the message part from the decoded codeword if we are using systematic code.
- For example, consider

$$\mathbf{G} = \begin{bmatrix} 0 & 1 & 1 & | & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & | & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & | & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & | & 0 & 0 & 0 & 1 \end{bmatrix}$$

Suppose $\hat{\mathbf{x}} = 1011010$, then we know that the decoded message is $\hat{\mathbf{b}} = 1010$.

Hamming Codes: Ex. 2

the columns of H

 $\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$

$$\underline{\mathbf{s}} = \underline{\mathbf{e}} \mathbf{H}^T = \sum_{\substack{j=1\\\text{Linear}}}^n e_j \underline{\mathbf{v}}_j$$

Note that for an error pattern with a single one in the j^{th} coordinate position, the syndrome $\underline{\mathbf{s}} = \underline{\mathbf{y}} \mathbf{H}^T$ is the same as the j^{th} column of \mathbf{H} .

Error pattern <u>e</u>	Syndrome = $\underline{\mathbf{e}}\mathbf{H}^{T}$	
(0,0,0,0,0,0,0)	(0,0,0)	
(0,0,0,0,0,0,1)	(1,1,1)	
(0,0,0,0,0,1,0)	(1,1,0)	
(0,0,0,0,1,0,0)	(1,0,1)	
(0,0,0,1,0,0,0)	(0,1,1)	
(0,0,1,0,0,0,0)	(0,0,1)	
(0,1,0,0,0,0,0)	(0,1,0)	
(1,0,0,0,0,0,0)	(1,0,0)	
(0110000)	(0 10)(+(001)=(011

Description of the production of the production of the production of the product of th

Hamming Codes: Decoding Algorithm

- For general linear codes, the two cases discussed on the previous slide may not cover every cases.
- For Hamming codes, because the columns are constructed from all possible non-zero *m*-tuples, the syndrome vectors must fall into one of the two cases considered.
- Hamming Codes: Decoding Recipe
 Compute the syndrome <u>s</u> = yH^T for the received vector.

Case 1: If
$$\underline{s} = \underline{0}$$
, set $\hat{\underline{x}} = \underline{y}$.

- Cose 2 If $\underline{s} \neq \underline{0}$,
 - Determine the position *j* of the column of **H** that is the transposition of the syndrome.
 - set $\hat{\mathbf{x}} = \mathbf{y}$ but with the j^{th} bit complemented.

Decoding Algorithm

- Assumption: the columns of **H** are nonzero and distinct.
- Compute the syndrome $\underline{\mathbf{s}} = \mathbf{y}\mathbf{H}^T$ for the received vector.
- Case 1: If $\underline{\mathbf{s}} = \underline{\mathbf{0}}$, set $\mathbf{\hat{x}} = \mathbf{y}$.
- Case 2: If $\underline{\mathbf{s}} \neq \underline{\mathbf{0}}$,
 - determine the position *j* of the column of **H** that is the same as (the transposition) of the syndrome,
 - set $\hat{\mathbf{x}} = \mathbf{y}$ but with the *j*th bit complemented.
- For Hamming codes, because the columns are constructed from all possible non-zero *m*-tuples, the syndrome vectors must fall into one of the two cases considered.
- For general linear block codes, the two cases above may not cover every cases.

Interleaving

- Conventional error-control methods such as parity checking are designed for errors that are isolated or statistically independent events.
- Some errors occur in **bursts** that span several successive bits.
 - These errors tend to group together in bursts. Thus, they are no longer independent.
 - Examples
 - impulse noise produced by lightning and switching transients
 - fading in wireless systems
 - channel with memory
- Such multiple errors wreak havoc on the performance of conventional codes and must be combated by special techniques.
- One solution is to spread out the transmitted codewords.
- We consider a type of interleaving called **block interleaving**.

- To interleave = to combine different things so that parts of one thing are put between parts of another thing
- Ex. To interleave two books together:

Interleaving: Advantage

- Consider the case of a system that can only correct single errors.
- If an error burst happens to the original bit sequence, the system would be overwhelmed and unable to correct the problem.

original bit sequence
$$(x_1^{(1)}x_2^{(1)}\cdots x_n^{(1)})(x_1^{(2)}x_2^{(2)}\cdots x_n^{(2)})\cdots (x_1^{(\ell)}x_2^{(\ell)}\cdots x_n^{(\ell)})$$

interleaved transmission $(x_1^{(1)}x_1^{(2)}\cdots x_1^{(\ell)})(x_2^{(1)}x_2^{(2)}\cdots x_2^{(\ell)})\cdots (x_n^{(1)}x_n^{(2)}\cdots x_n^{(\ell)})$

- However, in the interleaved transmission,
 - successive bits which come from *different* original blocks have been corrupted
 - when received, the bit sequence is reordered to its original form and then the FEC can correct the faulty bits
 - Therefore, single error-correction system is able to fix several errors.

Interleaving: Advantage

- If a burst of errors affects at most ℓ consecutive bits, then each original block will have at most one error.
- If a burst of errors affects at most *rℓ* consecutive bits (assume *r < n*),

then each original block will have at most r errors.

- Assume that there are no other errors in the transmitted stream of ℓn bits.
 - A single error-correcting code can be used to correct a single burst spanning upto ℓ symbols.
 - A double error-correcting code can be used to correct a single burst spanning upto 2ℓ symbols.