
dmin is an important quantity
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To be able to detect all w-bit errors, we need .
With such a code there is no way that w errors can change a valid 
codeword into another valid codeword. 
When the receiver observes an illegal codeword, it can tell that a 
transmission error has occurred. 

To be able to correct all w-bit errors, we need .
This way, the legal codewords are so far apart that even with w
changes the original codeword is still closer than any other 
codeword.

Example

28

Consider the code

Is it a linear code?

dmin = 

It can detect (at most) ___ errors.

It can correct (at most) ___ errors.

0000000000, 0000011111, 1111100000, and 1111111111



Hamming codes
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One of the earliest codes studied in coding theory.
Named after Richard W. Hamming

The IEEE Richard W. Hamming Medal, named after him, is an 
award given annually by Institute of Electrical and Electronics 
Engineers (IEEE), for "exceptional contributions to information 
sciences, systems and technology“.

Sponsored by Qualcomm, Inc
Some Recipients:

1988 - Richard W. Hamming
1997 -Thomas M. Cover
1999 - David A. Huffman
2011 -Toby Berger

The simplest of a class of (algebraic) error correcting codes that 
can correct one error in a block of bits

Hamming codes: Ex. 1

30
[https://www.youtube.com/watch?v=cBBTWcHkVVY]



Hamming codes: Ex. 1
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In the video, the codeword is constructed 
from the data by

where

This is an example of Hamming (7,4) code

The message bits are also referred to as the data bits or information bits. 
The non-message bits are also referred to as parity check bits, checksum 
bits, parity bits, or check bits.

Generator matrix: a revisit
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Fact: The 1s and 0s in the jth column of G tells which 
positions of the data bits are combined ( ) to produce the jth

bit in the codeword.

For the Hamming code in the previous slide,

p d p d p d d

d d d d

G



Generator matrix: a revisit

33

From , we see that the j element of  the 

codeword of a linear code is constructed from a linear 
combination of the bits in the message: 

The elements in the jth column of the generator matrix become 
the weights for the combination. 

Because we are working in GF(2), has only two values: 0 or 1. 
When it is 1, we use in the sum.
When it is 0, we don’t use in the sum.

Conclusion: For the jth column, the ith element is determined from 
whether the ith message bit is used in the sum that produces the jth
element of the codeword . 

Parity Check Matrix: Ex. 1
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Structure in the codeword:

At the receiver, we check whether the received 
vector still satisfies these conditions via computing 
the syndrome vector:

y y y y y y y



Parity Check Matrix: Ex 1
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Intuitively, the parity check matrix , as the name suggests, tells 
which bits in the observed vector are used to “check” for validity of .
The number of rows is the same as the number of conditions to check 
(which is the same as the number of parity check bits).
For each row, a one indicates that the bits (including the bits in the parity 
positions) are used in the validity check calculation.

Structure in the codeword:

Parity Check Matrix: Ex 1
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Relationship between and .



Parity Check Matrix: Ex 1
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Relationship between and .

Parity Check Matrix: Ex 1
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Relationship between and .

(columns of) identity matrix 
in the data positions

(columns of) identity matrix 
in the parity check positions



Parity Check Matrix: Ex 1
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Relationship between and .

Key property:

Proof:

When there is no error , the syndrome vector 
calculation should give .

By definition, 

.
Therefore, when , we have .

To have for any , we must have .

Parity Check Matrix

40

T
k n k



Systematic Encoding
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Code constructed with distinct information bits and check 
bits in each codeword are called systematic codes. 

Message bits are “visible” in the codeword.

Popular forms of G:

kk n k

k k n k

kk n k

n k

k

k

b b b

b b bx x x
n kx n kx nx

k

k k nk

k n

k

kx

b

b x

b

b x

b

b
x x kx

Parity check matrix
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For the generators matrices we discussed in the previous 
slide, the corresponding parity check matrix can be 
found easily:

T
k n k

kk n k

k k n k
T

n k

T
n k

Check:



Hamming codes: Ex. 2
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Systematic (7,4) Hamming Codes

Hamming codes
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Now, we will gives a general recipe for constructing Hamming 
codes.

Parameters:

number of parity bits

It can be shown that, for Hamming codes,

dmin = 3.

Error correcting capability: 



Construction of Hamming Codes
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Start with m.

1. Parity check matrix H:
Construct a matrix whose columns consist of all nonzero binary 
m-tuples.
The ordering of the columns is arbitrary. 
However, next step is easy when the columns are arranged so 
that                      . 

2. Generator matrix G:
When                       , we have                                               .

m

T T
k km

Hamming codes: Ex. 2
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Systematic (7,4) Hamming Codes

Columns are all possible 3-bit vectors
We arrange the columns so that I3 is on 
the left to make the code systematic. 
(One can also put I3 on the right.)

Note that the size of the identity 
matrices in and are not the same.



Minimum Distance Decoding
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At the decoder, suppose we want to use minimum distance 
decoding, then

The decoder needs to have the list of all the possible codewords
so that it can compare their distances to the received vector .
There are 2k codewords each having n bits. 
Therefore, saving these takes bits.
Also, we will need to perform the comparison 2k times.

Alternatively, we can utilize the syndrome vector (which is 
computed from the parity-check matrix).

The syndrome vector is computed from the parity-check matrix 
.

Therefore, saving takes bits.

Minimum Distance Decoding
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Observe that

Therefore, minimizing the distance is the same as minimizing the weight of the 
error pattern.
New goal: 

find the decoded error pattern with the minimum weight
then, the decoded codeword is 

Once we know we can directly extract the message part from the decoded 
codeword if we are using systematic code.
For example, consider 

Suppose , then we know that the decoded message is .



Properties of Syndrome Vector
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From , we have

Thinking of as a matrix with many columns inside,

Therefore, is a linear combination of the columns of .

T T T
n

n k n k n

Hamming Codes: Ex. 2
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T

Note that for an error pattern 
with a single one in the jth
coordinate position, the 
syndrome is the 
same as the jth column of H.

Linear 
combination of 
the columns of H



We will assume that the columns of are nonzero and distinct.
This is automatically satisfied for Hamming codes constructed from our recipe.

When , we have .
When , we can conclude that .

There can also be that gives . 
For example, any nonzero , will also give . 
However, they have larger weight than . 

The decoded codeword is the same as the received vector.

When, (a pattern with a single one in the jth position)

we have the jth column of .

When the jth column of , we can conclude that

There can also be other that give . However, their weights
can not be 0 (because, if so, we would have but the columns of are nonzero)
nor 1 (because the columns of are distinct).

We flip the jth bit of the received vector to get the decoded codeword.

Properties of Syndrome Vector
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Hamming Codes: Decoding Algorithm

52

For general linear codes, the two cases discussed on the previous 
slide may not cover every cases.
For Hamming codes, because the columns are constructed from 
all possible non-zero m-tuples, the syndrome vectors must fall into 
one of the two cases considered.
Hamming Codes: Decoding Recipe

Compute the syndrome for the received vector. 

If  , set .
If  ,

Determine the position j of the column of H that is the transposition of the 
syndrome.
set but with the jth bit complemented.



We will assume that the columns of are nonzero and distinct.
This is automatically satisfied for Hamming codes constructed from our recipe.

Case 1: When , we have .
When , we can conclude that .

There can also be that gives . 
For example, any nonzero , will also give . 
However, they have larger weight than . 

The decoded codeword is the same as the received vector.

Case 2: When, (a pattern with a single one in the jth position)

we have the jth column of .

When the jth column of , we can conclude that

There can also be other that give . However, their weights
can not be 0 (because, if so, we would have but the columns of are nonzero)
nor 1 (because the columns of are distinct).

We flip the jth bit of the received vector to get the decoded codeword.

Properties of Syndrome Vector
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Decoding Algorithm

52

Assumption: the columns of are nonzero and distinct.
Compute the syndrome for the received vector. 

Case 1: If  , set .

Case 2: If  ,
determine the position j of the column of H that is the same as 
(the transposition) of the syndrome,
set but with the jth bit complemented.

For Hamming codes, because the columns are constructed 
from all possible non-zero m-tuples, the syndrome vectors 
must fall into one of the two cases considered.
For general linear block codes, the two cases above may not 
cover every cases.



Hamming Codes: Ex. 1
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Consider the Hamming code with

Suppose we observe at the 
receiver. Find the decoded codeword and the decoded 
message.



Interleaving
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Conventional error-control methods such as parity checking are 
designed for errors that are isolated or statistically independent 
events.
Some errors occur in bursts that span several successive bits.

These errors tend to group together in bursts. 
Thus, they are no longer independent.
Examples

impulse noise produced by lightning and switching transients
fading in wireless systems 
channel with memory

Such multiple errors wreak havoc on the performance of 
conventional codes and must be combated by special techniques. 
One solution is to spread out the transmitted codewords.
We consider a type of interleaving called block interleaving.

Interleave as a verb
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To interleave = to combine different things so that parts of 
one thing are put between parts of another thing

Ex. To interleave two books together:



Interleaving: Example
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Consider a sequence of m blocks of coded data:

Arrange these blocks as rows of a table.
Normally, we get the bit sequence simply by 
reading the table by rows.
With interleaving (by an interleaver), transmission 
is accomplished by reading out of this table by 
columns.
Here, blocks each of length n are interleaved to 
form a sequence of length n.

The received symbols must be deinterleaved (by a deinterleaver) prior to decoding.

Interleaving: Advantage
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Consider the case of a system that can only correct single errors. 
If an error burst happens to the original bit sequence, the system 
would be overwhelmed and unable to correct the problem. 

However, in the interleaved transmission, 
successive bits which come from different original blocks have been 
corrupted 
when received, the bit sequence is reordered to its original form and 
then the FEC can correct the faulty bits 
Therefore, single error-correction system is able to fix several errors.

original bit sequence

interleaved transmission



Interleaving: Advantage
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If a burst of errors affects at most consecutive bits, 
then each original block will have at most one error.
If a burst of errors affects at most consecutive bits 
(assume ), 
then each original block will have at most errors.
Assume that there are no other errors in the transmitted 
stream of n bits.

A single error-correcting code can be used to correct a single 
burst spanning upto symbols.
A double error-correcting code can be used to correct a single 
burst spanning upto 2 symbols.


