$d_{\text {min }}$ is an important oquag̣intity

$$
c^{(4)} \quad w<d_{\min }
$$

- To be able to detect all w-bit errors, we need $d_{\min } \geq w+1$.
- With such a code there is no way that w errors can change a valid codeword into another valid codeword.
- When the receiver observes an illegal codeword, it can tell that a transmission error has occurred.

$$
d_{m i n}>2 w
$$

- To be able to correct all w-bit errors, we need $d_{\text {min }} \geq 2 w+1 . \Rightarrow w \leqslant\left\{\frac{d_{-m}^{-1}}{2}\right]$
- This way, the legal codewords are so far apart that even with w changes the original codeword is still closer than any other codeword.

Consider the code (1)

$\omega(\subseteq)$

- Is it a linear code?
(1) $0 \in C^{5}$

Yes.
(2) The sum of any pail of non-zero 5 codewords is st (a codeword. $|C|$

- $d_{\text {min }}=\min _{\subseteq} w(\subseteq)=5$ $\subseteq \neq 0$
- It can detect (at most) $\frac{4}{\tau}$ errors.
- It can correct (at most) _ $2 \ldots$ errors.

$$
\left\langle\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor=\left\lfloor\frac{5-1}{2}\right\rfloor=\left\lfloor\frac{4}{2}\right\rfloor\right.
$$

Hamming codes

- One of the earliest codes studied in coding theory.
- Named after Richard W. Hamming
- The IEEE Richard W. Hamming Medal, named after him, is an award given annually by Institute of Electrical and Electronics Engineers (IEEE), for "exceptional contributions to information sciences, systems and technology".
- Sponsored by Qualcomm, Inc
- Some Recipients:
- 1988 - Richard W. Hamming
- 1997 - Thomas M. Cover
- 1999 - David A. Huffman
- 2011 - Toby Berger

- The simplest of a class of (algebraic) error correcting codes that can correct one error in a block of bits

Hamming codes: Ex. 1

Hamming codes: Ex. $1 \quad \begin{gathered}n=7 \\ k=4\end{gathered}$

 This is an example of Hamming $(7,4)$ code code rate $=k / n=4 / 7$ In the video, the codeword is constructed from the data by

$$
\underline{\mathbf{x}}=\left[\begin{array}{lllllll}
p_{1} & d_{1} & p_{2} & d_{2} & p_{3} & d_{3} & d_{4}
\end{array}\right]
$$ where

$$
\begin{aligned}
& p_{1}=d_{1} \oplus d_{2} \oplus d_{4} \\
& p_{2}=d_{1} \oplus d_{3} \oplus d_{4} \\
& p_{3}=d_{2} \oplus d_{3} \oplus d_{4}
\end{aligned}
$$

- The message bits are also referred to as the data bits or information bits.
- The non-message bits are also referred to as parity check bits, checksum bits, parity bits, or check bits.

Generator matrix: a revisit

(ci). Fact: The 1 s and 0 s in the $j^{\text {th }}$ column of \mathbf{G} tells which positions of the data bits are combined (\oplus) to produce the $j^{\text {th }}$ bit in the codeword.

- For the Hamming code in the previous slide,
$p_{2}=d_{1} \oplus d_{3} \oplus d_{4}$
$p_{3}=d_{2} \oplus d_{3} \oplus d_{4}$

$$
\begin{aligned}
& \underline{\mathbf{x}}=\left[\begin{array}{lllllll}
p_{1} & d_{1} & p_{2} & \underbrace{d_{2}} \begin{array}{llll}
p_{2} & d_{2} & d_{4}
\end{array}] & d \\
\downarrow
\end{array}\right. \\
& =\left[\begin{array}{llll}
d_{1} & d_{2} & d_{3} & d_{4}
\end{array}\right]\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Generator matrix: a revisit

 codeword $\underline{\mathbf{x}}$ of a linear code is constructed from a linear combination of the bits in the message:

$$
x_{j}=\sum_{i=1}^{k} b_{i} g_{i j} .
$$

- The elements in the $j^{\text {th }}$ column of the generator matrix become the weights for the combination.
- Because we are working in $\mathrm{GF}(2), g_{i j}$ has only two values: 0 or 1 .
- When it is 1 , we use b_{i} in the sum.
- When it is 0 , we don't use b_{i} in the sum.
- Conclusion: For the $j^{\text {th }}$ column, the $i^{\text {th }}$ element is determined from whether the $i^{\text {th }}$ message bit is used in the sum that produces the $j^{\text {th }}$ element of the codeword \mathbf{x}.

Parity Check Matrix: Ex 1

- Intuitively, the parity check matrix \mathbf{H}, as the name suggests, tells which bits in the observed vector $\underline{\mathbf{y}}$ are used to "check" for validity of $\underline{\mathbf{y}}$.
- The number of rows is the same as the number of conditions to check (which is the same as the number of parity check bits).
- For each row, a one indicates that the bits (including the bits in the parity positions) are used in the validity check calculation.

Structure in the codeword:
$\longleftrightarrow \mathbf{H}=\left[\begin{array}{lllllll}y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} \\ x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\ p_{1} & d_{1} & p_{2} & d_{2} & p_{3} & d_{3} & d_{4} \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$

Parity Check Matrix: Ex 1

Relationship between \mathbf{G} and \mathbf{H}.

$$
\mathbf{G}=\left[\begin{array}{lllllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\
p_{1} & d_{1} & p_{2} & d_{2} & p_{3} & d_{3} & d_{4} \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \longleftrightarrow \mathbf{H}=\left[\begin{array}{lllllll}
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} \\
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\
p_{1} & d_{1} & p_{2} & d_{2} & p_{3} & d_{3} & d_{4} \\
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Parity Check Matrix: Ex 1

Relationship between \mathbf{G} and \mathbf{H}.
$\mathbf{G}=\left[\begin{array}{lllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\ p_{1} & d_{1} & p_{2} & d_{2} & p_{3} & d_{3} & d_{4} \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right] \longleftrightarrow \mathbf{H}=\left[\begin{array}{lllllll}y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} \\ x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\ p_{1} & d_{1} & p_{2} & d_{2} & p_{3} & d_{3} & d_{4} \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$

Parity Check Matrix: Ex 1

Relationship between \mathbf{G} and \mathbf{H}.
$\mathbf{G}=\left[\begin{array}{llllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\ p_{1} & d_{1} & p_{2} & d_{2} & p_{3} & d_{3} & d_{4} \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right] \longleftrightarrow \mathbf{H}=\left[\begin{array}{lllllll}y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} \\ x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\ p_{1} & d_{1} & p_{2} & d_{2} & p_{3} & d_{3} & d_{4} \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$
(columns of) identity matrix (columns of) identity matrix in the data positions
in the parity check positions

Parity Check Matrix: Ex 1

Relationship between \mathbf{G} and \mathbf{H}.

$$
\mathbf{G}=\left[\begin{array}{llllllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\
p_{1} & d_{1} & p_{2} & d_{2} & p_{3} & d_{3} & d_{4}
\end{array}\left[\begin{array}{llllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \quad \begin{array}{lllllll}
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} \\
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\
p_{1} & d_{1} & p_{2} & d_{2} & p_{3} & d_{3} & d_{4} \\
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Parity Check Matrix

Key property:

$$
\mathbf{G H}^{T}=\mathbf{0}_{k \times(n-k)}
$$

Proof:

- When there is no error $(\underline{\mathbf{e}}=\underline{\mathbf{0}})$, the syndrome vector calculation should give $\underline{\mathbf{S}}=\underline{\mathbf{0}}$.
- By definition,

$$
\underline{\mathbf{s}}=\underline{\mathbf{y}} \mathbf{H}^{T}=(\underline{\mathbf{x}} \oplus \underline{\mathbf{e}}) \mathbf{H}^{T}=\underline{\mathbf{x}} \mathbf{H}^{T} \bigoplus \underline{\mathbf{e}} \mathbf{H}^{T}=\underline{\mathbf{b}} \mathbf{G} \mathbf{H}^{T} \bigoplus \underline{\mathbf{e}} \mathbf{H}^{T} .
$$

- Therefore, when $\underline{\mathbf{e}}=\underline{\mathbf{0}}$, we have $\underline{\mathbf{s}}=\underline{\mathbf{b}} \mathbf{G H}^{T}$.
- To have $\underline{\mathbf{s}}=\underline{\mathbf{0}}$ for any $\underline{\mathbf{b}}$, we must have $\mathbf{G H}^{T}=\underline{\mathbf{0}}$.

Systematic Encoding

- Code constructed with distinct information bits and check bits in each codeword are called systematic codes.
- Message bits are "visible" in the codeword.
- Popular forms of G:

$$
\left.\begin{array}{rl}
\mathbf{G}=\left[\begin{array}{l:l}
\mathbf{P}_{k \times(n-k)} & \mathbf{I}_{k}
\end{array}\right] & \underline{\mathbf{x}}
\end{array}=\underline{\mathbf{b} \mathbf{G}=\left[\begin{array}{llll:l}
b_{1} & b_{2} & \cdots & b_{k}
\end{array}\right]\left[\begin{array}{lllll}
\mathbb{P}_{k \times(n-k)} & \mathbf{I}_{k}
\end{array}\right]} \begin{array}{lllllll}
x_{1} & x_{2} & \cdots & x_{n-k} & b_{1} & b_{2} & \cdots \\
b_{k}
\end{array}\right]
$$

$\mathbf{G}=\left[\begin{array}{l|l}\mathbf{I}_{k} & \mathbf{P}_{k \times(n-k)}\end{array}\right] \underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}=\left[\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{k}\end{array}\right]\left[\begin{array}{l|l}\mathbf{I}_{k} & \mathbf{P}_{k \times(n-k)}\end{array}\right]$

$$
=\left[\begin{array}{llll:llll}
b_{1} & b_{2} & \cdots & b_{k} & x_{k+1} & x_{k+2} & \cdots & x_{n}
\end{array}\right]
$$

Parity check matrix

- For the generators matrices we discussed in the previous slide, the corresponding parity check matrix can be found easily:

$$
\mathbf{G}=\left[\begin{array}{l:l}
\mathbf{P}_{k \times(n-k)} & \mathbf{I}_{k}
\end{array}\right] \quad \mathbf{H}=\left[\begin{array}{l:l}
\mathbf{I}_{n-k} & -\mathbf{P}^{T}
\end{array}\right]
$$

Check: $\mathbf{G H}^{T}=\left[\begin{array}{l:c}\mathbf{P} & \mathbf{I}\end{array}\right]\left[\begin{array}{c}\mathbf{I} \\ \mathbf{- P}\end{array}\right]=\mathbf{P} \oplus(-\mathbf{P})=\mathbf{0}_{k \times(n-k)}$

$$
\mathbf{G}=\left[\begin{array}{l:l}
\mathbf{I}_{k} & \mathbf{P}_{k \times(n-k)}
\end{array}\right] \longmapsto \mathbf{H}=\left[\begin{array}{l:l}
-\mathbf{P}^{T} & \mathbf{I}_{n-k}
\end{array}\right]
$$

Hamming codes: Ex. 2

- Systematic $(7,4)$ Hamming Codes

Hamming codes

Now, we will gives a general recipe for constructing Hamming codes.

Parameters:

- $\stackrel{m}{m}=n-k=$ number of parity bits
- $n=2^{m}-1 \in\{3,7,15,31,63,127, \ldots\} \quad 3 \quad 715$
- $k=n-m=2^{m}-m-1$
$411 \cdots$
It can be shown that, for Hamming codes,
- $d_{\text {min }}=3$.
- Error correcting capability: $\left.t=1^{\left\lfloor\left\lfloor\frac{d_{\text {min }}-1}{2}\right.\right.}\right\rfloor$

Construction of Hamming Codes

- Start with m.

1. Parity check matrix \mathbf{H} :

Ex. $m=2$
$2^{m}-1=2^{2}-1<3$

- Construct a matrix whose columns consist of all nonzero binary m-tuples.
- The ordering of the columns is arbitrary.
 However, next step is easy when the columns are arranged so that $\mathbf{H}=\left[\begin{array}{l:l}\mathbf{I}_{m} & \mathbf{P}] \text {. }\end{array}\right.$

2. Generator matrix \mathbf{G} :

Minimum Distance Decoding

- At the decoder, suppose we want to use minimum distance decoding, then
- The decoder needs to have the list of all the possible codewords so that it can compare their distances to the received vector $\underline{\mathbf{y}}$.
- There are 2^{k} codewords each having n bits. Therefore, saving these takes $2^{k} \times n$ bits.
- Also, we will need to perform the comparison 2^{k} times.
- Alternatively, we can utilize the syndrome vector (which is computed from the parity-check matrix).
- The syndrome vector is computed from the parity-check matrix H.
- Therefore, saving \mathbf{H} takes $(n-k) \times n$ bits.

Minimum Distance Decoding

- Observe that

$$
d(\underline{\mathbf{x}}, \underline{\mathbf{y}})=\boldsymbol{w}(\underline{\mathbf{x}} \oplus \underline{\mathbf{y}})=\boldsymbol{w}(\underline{\mathbf{e}})
$$

- Therefore, minimizing the distance is the same as minimizing the weight of the error pattern.
- New goal:
- find the decoded error pattern $\underline{\mathbf{e}}$ with the minimum weight
- then, the decoded codeword is $\underline{\hat{\mathbf{x}}}=\underline{\mathbf{y}} \oplus \underline{\hat{\mathbf{e}}}$
- Once we know $\underline{\hat{\mathbf{x}}}$ we can directly extract the message part from the decoded codeword if we are using systematic code.
- For example, consider

$$
\mathbf{G}=\left[\begin{array}{lll:llll}
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Suppose $\underline{\hat{\mathbf{x}}}=1011010$, then we know that the decoded message is $\underline{\hat{\mathbf{b}}}=1010$.

Properties of Syndrome Vector

- From $\mathbf{G H}^{T}=\mathbf{0}$, we have

$$
\underline{\mathbf{s}}=\underline{\mathbf{y}} \mathbf{H}^{T}=(\underline{\mathbf{x}} \oplus \underline{\mathbf{e}}) \mathbf{H}^{T}=(\underline{\mathbf{b}} \mathbf{G} \oplus \underline{\mathbf{e}}) \mathbf{H}^{T} \stackrel{\downarrow}{=} \underline{\mathbf{e}}^{T}
$$

- Thinking of \mathbf{H} as a matrix with many columns inside,

$$
\begin{gathered}
\mathbf{H}=\left[\begin{array}{c}
\underline{\mathbf{h}}_{1} \\
\hline \underline{\mathbf{h}}_{2} \\
\vdots \\
\vdots \\
\underline{\mathbf{h}}_{n-k}
\end{array}\right]_{(n-k) \times n}=\left[\begin{array}{llll}
& \square & & \\
\underline{\mathbf{v}}_{1}^{T} & \mathbf{v}_{2}^{T} & \cdots & \mathbf{\underline { \mathbf { v } }}_{n}^{T}
\end{array}\right] \\
\underline{\mathbf{s}}=\underline{\mathbf{e}}^{T}=\sum_{j=1}^{n} e_{j} \underline{\mathbf{v}}_{j}
\end{gathered}
$$

- Therefore, $\underline{\mathbf{s}}$ is a linear combination of the columns of \mathbf{H}.

Hamming Codes: Ex. 2

$\mathbf{H}=\left[\begin{array}{lll:llll}1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1\end{array}\right]$

$$
\underline{\mathbf{s}}=\underline{\mathbf{e}} \mathbf{H}^{T}=\sum_{j=1}^{n} e_{j} \underline{\mathbf{v}}_{j}
$$

Linear
combination of the columns of \mathbf{H}

Note that for an error pattern with a single one in the $j^{\text {th }}$ coordinate position, the syndrome $\underline{\mathbf{s}}=\mathbf{y H}{ }^{T}$ is the same as the $j^{\text {th }}$ column of \mathbf{H}.

Error pattern \mathbf{e}	Syndrome $=\underline{\mathbf{e}} \mathbf{H}^{T}$
$(0,0,0,0,0,0,0)$	$(0,0,0)$
$(0,0,0,0,0,0,1)$	$(1,1,1)$
$(0,0,0,0,0,1,0)$	$(1,1,0)$
$(0,0,0,0,1,0,0)$	$(1,0,1)$
$(0,0,0,1,0,0,0)$	$(0,1,1)$
$(0,0,1,0,0,0,0)$	$(0,0,1)$
$(0,1,0,0,0,0,0)$	$(0,1,0)$
$(1,0,0,0,0,0,0)$	$(1,0,0)$

Properties of Syndrome Vector

- We will assume that the columns of \mathbf{H} are nonzero and distinct.
- This is automatically satisfied for Hamming codes constructed from our recipe.
- When $\underline{\mathbf{e}}=\underline{\mathbf{0}}$, we have $\underline{\mathbf{s}}=\underline{\mathbf{0}}$.
- When $\underline{\mathbf{s}}=\underline{\mathbf{0}}$, we can conclude that $\underline{\hat{\mathbf{e}}}=\underline{\mathbf{0}}$.
- There can also be $\underline{\mathbf{e}} \neq \underline{\mathbf{0}}$ that gives $\underline{\mathbf{s}}=\underline{\mathbf{0}}$.
- For example, any nonzero $\tilde{\mathbf{e}} \in \mathcal{C}$, will also give $\underline{\mathbf{S}}=\underline{\mathbf{0}}$.
- However, they have larger weight than $\mathbf{e}=\underline{\mathbf{0}}$.
- The decoded codeword is the same as the received vector.
- When, $e_{i}=\left\{\begin{array}{ll}0, & i=j, \\ 1, & i \neq j,\end{array}\right.$ (a pattern with a single one in the $j^{\text {th }}$ position) we have $\underline{\mathbf{s}}=\underline{\mathbf{v}}_{j}=$ the $j^{\text {th }}$ column of \mathbf{H}.
- When $\underline{\mathbf{s}}=$ the $j^{\text {th }}$ column of \mathbf{H}, we can conclude that $\hat{e}_{i}= \begin{cases}0, & i=j, \\ 1, & i \neq j,\end{cases}$
- There can also be other $\underline{\mathbf{e}}$ that give $\underline{\mathbf{s}}=\underline{\mathbf{v}}_{j}$. However, their weights
- can not be 0 (because, if so, we would have $\underline{\mathbf{s}}=\underline{\mathbf{0}}$ but the columns of \mathbf{H} are nonzero)
- nor 1 (because the columns of \mathbf{H} are distinct).
- We flip the $j^{\text {th }}$ bit of the received vector to get the decoded codeword.

Hamming Codes: Decoding Algorithm

- For general linear codes, the two cases discussed on the previous slide may not cover every cases.
- For Hamming codes, because the columns are constructed from all possible non-zero m-tuples, the syndrome vectors must fall into one of the two cases considered.
Hantulity Codes: Decoding Recipe
- Compute the syndrome $\underline{\mathbf{s}}=\underline{\mathbf{y}} \mathbf{H}^{T}$ for the received vector.

Case
1: If $\underline{\mathbf{s}}=\underline{\mathbf{0}}, \operatorname{set} \underline{\hat{\mathbf{x}}}=\underline{\mathbf{y}}$.
case
If $\underline{\mathbf{s}} \neq \underline{\mathbf{0}}$,

- Determine the position j of the column of \mathbf{H} that is the transposition of the syndrome.
- set $\underline{\hat{\mathbf{x}}}=\underline{\mathbf{y}}$ but with the $j^{\text {th }}$ bit complemented.

Properties of Syndrome Vector

- We will assume that the columns of \mathbf{H} are nonzero and distinct.
- This is automatically satisfied for Hamming codes constructed from our recipe.
- Case 1: When $\underline{\mathbf{e}}=\underline{\mathbf{0}}$, we have $\underline{\mathbf{s}}=\underline{\mathbf{0}}$.
- When $\underline{\mathbf{s}}=\underline{\mathbf{0}}$, we can conclude that $\underline{\mathbf{e}}=\underline{\mathbf{0}}$.
- There can also be $\underline{\mathbf{e}} \neq \underline{\mathbf{0}}$ that gives $\underline{\mathbf{s}}=\underline{\mathbf{0}}$.
- For example, any nonzero $\tilde{\mathbf{e}} \in \mathcal{C}$, will also give $\underline{\mathbf{s}}=\underline{\mathbf{0}}$.
- However, they have larger weight than $\mathbf{e}=\underline{\mathbf{0}}$.
- The decoded codeword is the same as the received vector.
- Case 2: When, $e_{i}=\left\{\begin{array}{ll}0, & i=j, \\ 1, & i \neq j,\end{array}\right.$ (a pattern with a single one in the $j^{\text {th }}$ position) we have $\underline{\mathbf{s}}=\underline{\mathbf{v}}_{j}=$ the $j^{\text {th }}$ column of \mathbf{H}.
- When $\underline{\mathbf{s}}=$ the $j^{\text {th }}$ column of \mathbf{H}, we can conclude that $\hat{e}_{i}= \begin{cases}0, & i=j, \\ 1, & i \neq j,\end{cases}$
- There can also be other $\underline{\mathbf{e}}$ that give $\underline{\mathbf{s}}=\underline{\mathbf{v}}_{j}$. However, their weights
- can not be 0 (because, if so, we would have $\underline{\mathbf{s}}=\underline{\mathbf{0}}$ but the columns of \mathbf{H} are nonzero)
- nor 1 (because the columns of \mathbf{H} are distinct).
- We flip the $j^{\text {th }}$ bit of the received vector to get the decoded codeword.

Decoding Algorithm

- Assumption: the columns of \mathbf{H} are nonzero and distinct.
- Compute the syndrome $\underline{\mathbf{s}}=\mathbf{y H}^{T}$ for the received vector.
- Case 1: If $\underline{\mathbf{s}}=\underline{\mathbf{0}}, \operatorname{set} \underline{\hat{\mathbf{x}}}=\underline{\mathbf{y}}$.
- Case 2: If $\underline{\mathbf{s}} \neq \underline{\mathbf{0}}$, determine the position j of the column of \mathbf{H} that is the same as (the transposition) of the syndrome,
set $\underline{\hat{\mathbf{x}}}=\underline{\mathbf{y}}$ but with the $j^{\text {th }}$ bit complemented.
- For Hamming codes, because the columns are constructed from all possible non-zero m-tuples, the syndrome vectors must fall into one of the two cases considered.
- For general linear block codes, the two cases above may not cover every cases.

Hamming Codes: Ex. 1

- Consider the Hamming code with

$$
\mathbf{G}=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 \\
1
\end{array}\right] \Longleftrightarrow \mathbf{H}=\left[\begin{array}{llllllll}
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- Suppose we observe $\underline{\mathbf{y}}=\left[\begin{array}{lllllll}0 & 1 & 0 & 1 & 1 & 1 & 1\end{array}\right]$ at the receiver. Find the decoded codeword and the decoded message.

$$
\begin{aligned}
& \underline{Q}=y_{L} H^{\top}=\left(\begin{array}{ll}
1 & 1
\end{array} 0\right) \rightarrow \text { same as the } 2^{\text {nd }} \text { column of } H \\
& \hat{\hat{x}}=\left[\begin{array}{llllll}
0 & x & 0 & 1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

$$
\left.\begin{array}{l}
\frac{\hat{b}}{\hat{b}} \\
\frac{\hat{d}}{\hat{m}}
\end{array}\right\}=\left[\begin{array}{llll}
0 & 1 & 1 & 1
\end{array}\right]
$$

Interleaving

- Conventional error-control methods such as parity checking are designed for errors that are isolated or statistically independent events.
- Some errors occur in bursts that span several successive bits.
- These errors tend to group together in bursts.

Thus, they are no longer independent.

- Examples
- impulse noise produced by lightning and switching transients
- fading in wireless systems
- channel with memory
- Such multiple errors wreak havoc on the performance of conventional codes and must be combated by special techniques.
- One solution is to spread out the transmitted codewords.
- We consider a type of interleaving called block interleaving.

Interleave as a verb

- To interleave $=$ to combine different things so that parts of one thing are put between parts of another thing
- Ex. To interleave two books together:

Interleaving: Example

Consider a sequence of m blocks of coded data:

$$
\left(x_{1}^{(1)} x_{2}^{(1)} \cdots x_{n}^{(1)}\right)\left(x_{1}^{(2)} x_{2}^{(2)} \cdots x_{n}^{(2)}\right) \cdots\left(x_{1}^{(\ell)} x_{2}^{(\ell)} \cdots x_{n}^{(\ell)}\right)
$$

】

- Arrange these blocks as rows of a table.
- Normally, we get the bit sequence simply by reading the table by rows.
- With interleaving (by an interleaver), transmission is accomplished by reading out of this table by columns.
- Here, ℓ blocks each of length n are interleaved to form a sequence of length ℓ.

$$
\left(x_{1}^{(1)} x_{1}^{(2)} \cdots x_{1}^{(\ell)}\right)\left(x_{2}^{(1)} x_{2}^{(2)} \cdots x_{2}^{(\ell)}\right) \cdots\left(x_{n}^{(1)} x_{n}^{(2)} \cdots x_{n}^{(\ell)}\right)
$$

The received symbols must be deinterleaved (by a deinterleaver) prior to decoding.

Interleaving: Advantage

- Consider the case of a system that can only correct single errors.
- If an error burst happens to the original bit sequence, the system would be overwhelmed and unable to correct the problem.
original bit sequence $\left(x_{1}^{(1)} x_{2}^{(1)} \cdots x_{n}^{(1)}\right)\left(x_{1}^{(2)} x_{2}^{(2)} \cdots x_{n}^{(2)}\right) \cdots\left(x_{1}^{(\ell)} x_{2}^{(\ell)} \cdots x_{n}^{(\ell)}\right)$
interleaved transmission $\left(x_{1}^{(1)} x_{1}^{(2)} \cdots x_{1}^{(\ell)}\right)\left(x_{2}^{(1)} x_{2}^{(2)} \cdots x_{2}^{(\ell)}\right) \cdots\left(x_{n}^{(1)} x_{n}^{(2)} \cdots x_{n}^{(\ell)}\right)$
- However, in the interleaved transmission, - successive bits which come from different original blocks have been corrupted
- when received, the bit sequence is reordered to its original form and then the FEC can correct the faulty bits
- Therefore, single error-correction system is able to fix several errors.

Interleaving: Advantage

- If a burst of errors affects at most ℓ consecutive bits, then each original block will have at most one error.
- If a burst of errors affects at most $r \ell$ consecutive bits (assume $r<n$), then each original block will have at most r errors.
- Assume that there are no other errors in the transmitted stream of ℓ_{n} bits.
- A single error-correcting code can be used to correct a single burst spanning upto ℓ symbols.
- A double error-correcting code can be used to correct a single burst spanning upto 2ℓ symbols.

